2019 VOL.2 Feb No.1 |
---|
|
Reference: [1] Hu W, Yan L, Liu K, et al. A Short-term Traffic Flow Forecasting Method Based on the Hybrid PSO-SVR[J]. Neural Processing Letters, 2016, 43(1):155-172. [2] Sun S, Zhang C, Zhang Y. Traffic Flow Forecasting Using a Spatio-temporal Bayesian Network Predictor[J]. Lecture Notes in Computer Science, 2017, 5(9):273-278. [3] Hong W C, Dong Y, Zheng F, et al. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model[J]. Applied Mathematics & Computation, 2011, 217(15):6733-6747. [4] Deng L, Yu D. Deep Learning: Methods and Applications[J]. Foundations & Trends in Signal Processing, 2014, 7(3):197-387. [5] Dan C C, Meier U, Gambardella L M, et al. Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition[J]. Neural Computation, 2010, 22(12):3207 - 3220. [6] Le Q V. Building high-level features using large scale unsupervised learning[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013:8595-8598. [7] Martens J. Deep learning via Hessian-free optimization[C]// International Conference on International Conference on Machine Learning. Omnipress, 2010:735-742. [8] Lv Y, Duan Y, Kang W, et al. Traffic Flow Prediction With Big Data: A Deep Learning Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873. [9] Huang W, Song G, Hong H, et al. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201. [10] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep beliefnets [J]. Neural Computation, 2006, 18 (7): 1527 [11] Fischer A. Training Restricted Boltzmann Machines[J]. KI - Künstliche Intelligenz, 2015, 29(4):441-444. [12] Hinton G E. A Practical guide to training restricted Boltzmann machines [J]. Momentum, 2012, 9 (1): 599-619. [13] Dean J, Ghemawat S. MapReduce: A Flexible Data Processing Tool[J]. Communications of the Acm, 2010, 53(1):72-77. [14] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing[C]// Usenix Conference on Networked Systems Design and Implementation. USENIX Association, 2012:2-2. [15] Chandrasekar S, Dakshinamurthy R, Seshakumar P G, et al. A novel indexing scheme for efficient handling of small files in Hadoop Distributed File System[C]// International Conference on Computer Communication and Informatics. IEEE, 2013:1-8. [16] Duchi J, Hazan E, Singer Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J]. Journal of Machine Learning Research, 2011, 12(7):257-269. [17] Park S W, Park J, Bong K, et al. An Energy-Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture for Big Data Applications[J]. IEEE Transactions on Biomedical Circuits & Systems, 2016, 9(6):838-848. [18] Du T, Li L. Deep Neural Networks with Parallel Autoencoders for Learning Pairwise Relations: Handwritten Digits Subtraction[C]// IEEE International Conference on Machine Learning & Applications. 2016. [19] Mao B, Fadlullah Z M, Tang F, et al. Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning[J]. IEEE Transactions on Computers, 2017, 66(11):1946-1960. [20] Dao M S, Dao M S, Mezaris V, et al. Deep Learning for Mobile Multimedia: A Survey[J]. Acm Transactions on Multimedia Computing Communications & Applications, 2017, 13(3s): 34-42.
|
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16