location:Home > 2019 Vol.2 Dec. No.6 > Research on Feedback Marking Methods for Characteristic Data of Interactive Network in Big Data

2019 Vol.2 Dec. No.6

  • Title: Research on Feedback Marking Methods for Characteristic Data of Interactive Network in Big Data
  • Name: Norbert Seligman
  • Company: Holmesglen Institute
  • Abstract:

    In order to solve the problem that the conventional interactive network feature data information feedback labeling method has a low success rate of feature data information feedback labeling in a big data environment, a method for interactive network characteristic data information feedback labeling under big data is proposed. Determine whether the primary key for interactive network characteristic data collection is automatically added to complete the collection, identify the collected data, and rely on the big data labeling function to establish labeling rules for characteristic data information feedback. Run the labeling program according to the labeling rules to realize the interactive network characteristic data information feedback labeling under big data. Using the proposed labeling method, the simulation verification is carried out in the big data interactive network characteristic data environment, and the proposed interactive network characteristic data information feedback labeling method is compared with the conventional labeling method. The success rate of feature data information feedback tagging increased by 57.06%, which is suitable for interactive network feature data information feedback tagging under big data.

  • Keyword: Interactive Network; Feedback Marking Methods;
  • DOI: 10.12250/jpciams2019060636
  • Citation form: Norbert Seligman.Research on Feedback Marking Methods for Characteristic Data of Interactive Network in Big Data[J]. Computer Informatization and Mechanical System, 2019, vol. 2, pp. 170-176.
Reference:

[1] Cheng Zhiqiang, Lian Hongpeng. Research on the Encryption Simulation of Communication Characteristic Data in Internet of Things [J]. Computer Simulation, 2016, 33 (11): 324-327. 

[2] Lindkvist L ,  Sundin E . The role of Product-service Systems Regarding Information Feedback Transfer in the Product Life-cycle Including Remanufacturing[J]. Procedia Cirp, 2016, 47:311-316.

[3] Shin D K ,  Choi W . The Degrees of Freedom Region of the Cognitive Interference Channel with Delayed Channel State Information Feedback[J]. IEEE Transactions on Communications, 2016, 64(3):1329-1341.

[4] Fang C ,  Makki B ,  Svensson T . On the performance of the Poisson-point-process-based networks with no channel state information feedback[J]. IET Communications, 2016, 10(15):2018-2024.

[5] Kourtellaris C K ,  Charalambous C D . Information Structures for Feedback Capacity of Channels with Memory and Transmission Cost: Stochastic Optimal Control & Variational Equalities[J]. IEEE Transactions on Information Theory, 2018:1-1.

[6] Amor S B ,  Perlaza S M ,  Krikidis I , et al. Feedback Enhances Simultaneous Wireless Information and Energy Transmission in Multiple Access Channels[J]. IEEE Transactions on Information Theory, 2017, PP(99):1-1.

[7] Makki B ,  Svensson T ,  Zorzi M . Wireless Energy and Information Transmission Using Feedback: Infinite and Finite Block-Length Analysis[J]. IEEE Transactions on Communications, 2016, 64(12):5304-5318.

[8] Germán Bassi,  Piantanida P ,  Shitz S S . Wiretap Channel With Causal State Information and Secure Rate-Limited Feedback[J]. IEEE Transactions on Communications, 2016, 64(3):1192-1203.

[9] Atwan J ,  Mohd M ,  Rashaideh H , et al. Semantically enhanced pseudo relevance feedback for Arabic information retrieval[J]. Journal of Information Science, 2015:0165551515594722.

[10] Stavrou P A ,  Charalambous C D ,  Kourtellaris C K . Sequential Necessary and Sufficient Conditions for Capacity Achieving Distributions of Channels with Memory and Feedback[J]. IEEE Transactions on Information Theory, 2016, PP(99):1-1.

[11] Yuan J ,  Li X . A Reliable and Lightweight Trust Computing Mechanism for IoT Edge Devices Based on Multi-Source Feedback Information Fusion[J]. IEEE Access, 2018, 6:23626-23638.

[12] Assemi B ,  Schlagwein D . Retraction notice to: Provider Feedback Information and Customer Choice Decisions on Crowdsourcing Marketplaces: Evidence from Two Discrete Choice Experiments [Decision Support Systems 82 (2016) 1-11][J]. Decision Support Systems, 2017, 95:117.


 


Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16