location:Home > 2020 Vol.3 Apr. No.2 > Design of high precision intelligent controller for minimally invasive surgery robot

2020 Vol.3 Apr. No.2

  • Title: Design of high precision intelligent controller for minimally invasive surgery robot
  • Name: Wenzhong Zhu
  • Company: School of Computer Science,Sichuan University of Science&Enginee
  • Abstract:

    Aiming at the problems of long control time and large error in traditional intelligent controller of ocean robot, a high precision intelligent controller of ocean robot based on improved particle swarm optimization is designed. This paper studies the principle of PID fuzzy simulation, uses PI fuzzy simulation to initialize the fuzzy controller, and then uses the improved particle swarm optimization algorithm to optimize the weight of the fuzzy rules and the quantitative proportional factor. At the same time, the design process and algorithm

  • Keyword: Ocean robot, High Precision, Intelligent Controller
  • DOI: 10.12250/jpciams2020020225
  • Citation form: Wenzhong Zhu.Design of high precision intelligent controller for minimally invasive surgery robot[J]. Computer Informatization and Mechanical System, 2020, vol. 3, pp. 80-87.
Reference:

[1] Jiang, S. Y., Lin, C. Y., Huang, K. T., et al., 2017. Shared control design of a walking-assistant robot. IEEE Transactions on Control Systems Technology, 25(6), 2143-2150.
[2] Kralev, J., Slavov, T., & Petkov, P., 2016. Design and experimental evaluation of robust controllers for a two-wheeled robot. International Journal of Control, 89(11), 2201-2226.
[3] Lee, C. H., & Wang, W. C., 2016. Robust adaptive position and force controller design of robot manipulator using fuzzy neural networks. Nonlinear Dynamics, 85(1), 1-12.
[4] Huang, P., Hu, Z., & Zhang, F., 2016. Dynamic modelling and coordinated controller designing for the manoeuvrable tether-net space robot system. Multibody System Dynamics, 36(2), 115-141.
[5] Gao, J,Y., He, Q, Y., & Zhan, Z, X., 2017. Design of Billiard Robot Controller Based on Neural Network Journal of Beihang University,43(3),533-543.
[6] Wang, M, L., & Luo, M, D., 2016. Design of a coordinated controller for redundant freedom dual-arm robots. Journal of System Simulation,28(8):1783-1789.
[7] Chaudhary H, Panwar V, Prasad R, et al., 2016. Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator[J]. Journal of Intelligent Manufacturing, 27(6),1299-1308.
[8] Boucher P., 2016. Waypoints guidance of differential-drive mobile robots with kinematic and precision constraints[J]. Robotica, 34(4),876-899.
[9] Somers, T., & Hollinger, G. A., 2016. Human–robot planning and learning for marine data collection. Autonomous Robots, 40(7), 1123-1137.
[10] Maurelli, F., Carreras, M., Rajan, K., & Lane, D., 2016. Guest editorial: special issue on long-term autonomy in ocean robotics. Autonomous Robots, 40(7), 1-2.

Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16