location:Home > 2020 Vol.3 Jun. No.3 > Design of biomedical instrument signal automatic acquisition system based on big data analysis

2020 Vol.3 Jun. No.3

  • Title: Design of biomedical instrument signal automatic acquisition system based on big data analysis
  • Name: Xiao-rong Zhao,Hong-hui Fan
  • Company: Bard College at Simon’s Rock
  • Abstract:

    The traditional biomedical signal automatic acquisition system had the disadvantage of low accuracy when collecting signals. Therefore, the design of biomedical signal automatic acquisition system based on big data analysis was proposed. The big data technology was introduced, a biomedical signal automatic acquisition system was built, and the design of biomedical signal automatic acquisition system was realized; relying on the biomedical signal automatic acquisition system, the signal acquisition process was embedded to achieve automatic signal acquisition. The experimental data showed that the proposed big data biomedical signal automatic acquisition system was 96.3% more accurate than the traditional system, and was suitable for different biomedical signal acquisition systems.

  • Keyword: biomedical;signal;automatic acquisition;system design;
  • DOI: 10.12250/jpciams2020030118
  • Citation form: Xiao-rong Zhao,Hong-hui Fan.Design of biomedical instrument signal automatic acquisition system based on big data analysis[J]. Computer Informatization and Mechanical System, 2020, vol. 3, pp. 19-23.
Reference:

[1]Bricq,S.,Collet,C.H.,Armspach,J.P..Unifying framework for multimodal brain MRI segmentation based on hidden markov chains[J]. Med. Image, 2017, 23(12):22-25.
[2]Gilbert.Ultrasonic detection based on computer simulation technology[J].2017,36(4)94-95.
[3]Liew A.W.C.,Hong Yan.An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J].IEEE Transcations on Med Im.2017, 11 (2) :60-62.
[4]Dao-Qiang Zhang and Song-Can Chen.A novel kemelized fuzzy c-means algorithm with application in medical image sementation[J].Artifical Intelligence in Medicine, 2017, 19 (2):37-38.
[5]Chuang KS,Tzang  HL,Chen T-J.Fuzzy c-means clustering with spatial information for image segmwntation[J].Computerized Medical Imaging andGraphics.2017,3(10):123-124.
[6]Saha,S. and Bandyopadhyay,S..MRI brain image segmentation by fuzzy symmetry based genetic clusering technique [J]. IEEE Congress Evoiutionary Computation, 2017, 23 (1):52-56.
[7]Tang,H,Dillenseger,J.L.,Bao,X.D.Luo,L.M.A vectorial image soft segmwntation method based on neighborhood weighted gaussian mixture model[J].Computerized Medical Imaging and Graphics.2017,42(12)34-36.
[8]Raghuvira Pratap A., K.Suvama Vani,J.Rama Devi,Dr.KnageeswaraRao.An efficient density based improved K-medoids clustering algorithm[J]. International Journal of Adanced Computer Science and Applications.2017,3(9)25-27.
[9]Chabat F.,Yang G-Z and Hansell D-M.Obstructive  lung diseases:texture classification for differentiation at CT[J].Radiology.2017,5(34)57-58.
[10]Wen-Feng Kuo,Chi-Yuan Lin and Yung-Nien Sun .MR images sementationComputer Society Conference on Computer Vision and Pattern Recognition[J].2017,27(5)67-69.

Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16