Reference: [1]J.Ham, D.Lee, and L.Saul. Semisupervised Alignment of Manifolds. Proc. 10th Int’l Workshop Artificial Intelligence and Statistics, pp. 120-127, Jan. 2005. [2]A.P.Shon, K.Grochow, A.Hertzmann, and R.Rao. Learning shared latent structure for image synthesis and robotic imitation. In Proc. NIPS, pages 1233–1240, 2006. [3]S.Lafon, Y.Keller, and R.R.Coifman. Data Fusion and Multicue Data Matching by Diffusion Maps. IEEE Trans. on PAMI, 2006,28(11):1784-1797. [4]Z.Zhang, H.Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput, 2004, 26 (1): 313-338. [5]X.Bai, H.Yu, and E.R.Hancock. Graph Matching Using Spectral Embedding and Alignment. Proc. Int’l Conf. Pattern Recognition, pp. 398-401, 2004. [6]M.Gori, M.Maggini, and L.Sarti. Exact and Approximate Graph Matching Using Random Walks. IEEE Trans. Pattern Analysis and Machine Intelligence,2005,27(7) vol. 27: 1100-1111. [7]Y.Keselman,A.Shokoufandeh,M.F.Demirci, S.J. Dickinson. Many-to-Many Graph Matching via Metric Embedding. Proc. Conf. Computer Vision and Pattern Recognition, pp. 850-857, 2003. [8]J.Black, M.Gargesha, K.Kahol, P.Kuchi, S.Panchanathan. A framework for performance evaluation of face recognition algorithms. ITCOM, Internet Multimedia Systems II, Boston, July 2002. [9]G.Little,S.Krishna,J.Black,S.Panchanathan. A methodology for evaluating robustness of face recognition algorithms with respect to changes in pose and illumination angle. ICASSP 2005, Philadelphia, March 2005. [10] He Xinggao, Li Chanjuan, Wang Ruijin, et al. Research on dimensionality reduction algorithm for high-dimensional sparse large data based on information entropy [J].Journal of University of Electronic Science and Technology, 2017 (2): 1225-1227.
|