Reference: [1]M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12), 3736–3745. [2]A. Buades, B. Coll, J.-M. Morel. A non-local algorithm for image denoising. International Conference on Computer Vision and Pattern Recognition, 2005, 2, pp. 60-65. [3]K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8), 2080-2095,. [4]A. Beck, M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processessing, 2009, 18(11), 2419-2434. [5]W. Dong, L. Zhang, G. Shi, X. Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization.[J] IEEE Trans. on Image Processing, 2011, 20(7), pp. 1838-1857. [6]A. N. Tikhonov. Solution of incorrectly formulated problems and regularization method. In Soviet Math. Dokl., 1963, vol. 4, 1035-1038, 1963. [7]J. Oliveira, J. M. Bioucas-Dias, M. Figueiredo. Adaptive total variation image deblurring: a majorization-minimization approach. Signal Processing, 2009, 89(9), 1683-1693. [8]J. Mairal, M. Elad, G. Sapiro. Sparse Representation for Color Image Restoration. IEEE Transactions on Image Processing, 2008, 17(1), 53-69. [9]A. M. Bruckstein, D. L. Donoho, M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 2009, 51(1), 34-81. [10]I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.[J] Communications on Pure and Applied Mathematics, 2004, 57(11), 1413-1457. [11]P. Combettes, V. Wajs. Signal recovery by proximal forward-backward splitting. SIAM Journal of Multiscale and Model Simulations, 2005, 4, 1168-1200. [12]Donoho.D.L. Denoising By Soft threshold. IEEE Transactions on Information Theory, 1995, 41(3), 613-627. [13]Levent Sendur, Ivan W. Selesnick. Bivariate Shrinkage Functions for Wavelet-Based Denoising Exploiting Interscale Dependency. IEEE Transactions on Signal Processing, 2002, 50(11), 2744-2756. [14]M. N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. [J] IEEE Transactions Image on Processing, 2005, 14(12), 2091-2106,. Yue Lu, Minh N. Do. A New Contourlet Transform with Sharp Frequency Localization International Conference on Image Processing, 2006, pp. 1629-1632.
|