location:Home > 2021 Vol.4 Mar.No.1 > Development and application of data structure teaching resources based on Python

2021 Vol.4 Mar.No.1

  • Title: Development and application of data structure teaching resources based on Python
  • Name: Liu Wei,Lu Xinghua
  • Company: a.Guangzhou Panyu Polytechnic, Guangzhou, Guangdong, 511400, China;
  • Abstract:

    This paper studies the poor effect of the development and utilization of teaching resources, and puts forward the development and application method of data structure teaching resources based on python. Build the python data structure teaching information management platform, optimize the functional structure of the platform, and search and divide the teaching resources through semantic retrieval, so as to improve the quality of the development and application of data structure teaching resources. Finally, the experiment proves that the development and application method of data structure teaching resources based on Python has high use value, It can better manage the massive teaching resources effectively and fully meet the research requirements.

     

  • Keyword: python; data structure; teaching resources; resource development
  • DOI: 10.12250/jpciams2021090110
  • Citation form: Liu Wei.Development and application of data structure teaching resources based on Python [J]. Computer Informatization and Mechanical System,2021,Vol.4,pp.47-53
Reference:

[1] Rauch E ,  Brown C A . 2021, Teaching Axiomatic Design for a Long-Term Sustainable Introduction of Industry 4.0 in SMEs. Procedia CIRP, 96(5):169-174.

[2] Weiss C J . 2020,  A Creative Commons Textbook for Teaching Scientific Computing to Chemistry Students with Python and Jupyter Notebooks. Journal of Chemical Education, 98(2),11.

[3] M Pérez-Enciso, LC Ramírez-Ayala,  Zingaretti L M . 2020,  SeqBreed: a python tool to evaluate genomic prediction in complex scenarios. Genetics Selection Evolution, 52(1),24.

[4] Virtanen P ,  Gommers R ,  Oliphant T E . 2020, Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(Suppl. 1):1-12.

[5] Arrigoni M ,  Madsen G . 2021, Spinney: Post-processing of first-principles calculations of point defects in semiconductors with Python. Computer Physics Communications, 264(5379):107946.

[6] Johnstone D N ,  Martineau B H ,  Crout P . 2020,  Density-based clustering of crystal (mis)orientations and the orix Python library. Journal of Applied Crystallography, 53(5):1293-1298.

[7] Gagunashvili N D ,  Halldorsson H ,  Neukirchen H . 2019, CHICOM: Code for comparing weighted or unweighted histograms in Fortran-77, C++, R and Python. Computer Physics Communications, 245(4):106872.

[8] CM  Biwer,  Capano C D ,  De S . 2019, PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals. Publications of the Astronomical Society of the Pacific, 131(996),34.

[9] Tran D T ,  Kiranyaz S ,  Gabbouj M . 2019,  PyGOP: A Python library for Generalized Operational Perceptron algorithms. Knowledge-Based Systems, 182(4):104801.

[10] Yilmaz M . 2019, Easy pre/post-processing of finite elements with custom symbolic-objects: A self-expressive Python interface. Computers & Structures, 222(Oct.):82-97.

[11] Ap A ,  Dm B . 2020,  Feature Vector Creation Using Hierarchical Data Structure for Spatial Domain Image Retrieval. Procedia Computer Science, 167(4):2458-2464.

[12] Kobak D ,  Linderman G C . 2021,  Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nature Biotechnology, 39(2):1-2.

[13] Chen Y ,  Zu S ,  Wang Y . 2020,  Expression of Concern: Deblending of simultaneous source data using a structure-oriented space-varying median filter. Geophysical Journal International, 34(3):3.

[14] Cordoba I ,  Bielza C ,  Larranaga P . 2020,  Sparse Cholesky Covariance Parametrization for Recovering Latent Structure in Ordered Data. IEEE Access, PP(99):1-1.

[15] Bs A ,  Sm B ,  Wkh C . 2020,  Efficient meta-data structure in top-k queries of combinations and multi-item procurement auctions - ScienceDirect. Theoretical Computer Science, 814(1):210-222.

[16] Tayal D K ,  Meena K . 2020,  A new MapReduce solution for associative classification to handle scalability and skewness in vertical data structure. Future generation computer systems, 103(Feb.):44-57.

[17] Mukherjee S ,  Dutta U ,  Sarkar J . 2020, Integrated Probabilistic Data Structure For Accurate and Scalable Sequence Prediction. Procedia Computer Science, 167(4):2429-2436.

[18] Gs A ,  Ck A ,  Jw A . 2019, Data Structure of the Digital Shadow for Systematic Knowledge Management Systems in Single and Small Batch Production - ScienceDirect. Procedia CIRP, 84(4):1094-1100.

[19] Stephane, Durocher, Robby. 2019,  A simple linear-space data structure for constant-time range minimum query - ScienceDirect. Theoretical Computer Science, 770(10):51-61.

[20] Moon K R ,  Dijk D V ,  Wang Z. 2019, Visualizing structure and transitions in high-dimensional biological data. Nature Biotechnology, 37(12):1482-1492.

 

Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16