location:Home > 2021 Vol.4 Mar.No.1 > Finite element analysis of large tonnage cable crane structure

2021 Vol.4 Mar.No.1

  • Title: Finite element analysis of large tonnage cable crane structure
  • Name: Li Yunbo, Wang Yuexue, Liu Jun
  • Company: Liuzhou ouweimu Machinery Co., Ltd, Liuzhou,Guangxi 545005,China
  • Abstract:

    For long-span suspension bridge, cable crane is an important special equipment for girder hoisting. The steel structure of large tonnage cable crane is mainly composed of walking mechanism and steel truss. The traveling mechanism is in direct contact with the main cable to transfer the weight of the crane itself and the lifting weight to the main cable, which plays an important role in the process of crane displacement and positioning hoisting. Under the construction conditions, its bearing capacity is directly related to the construction efficiency and safety. Combined with the finite element analysis method, the structural stress state of the main body of the walking mechanism steel structure under various construction conditions is simulated and analyzed to improve the calculation efficiency and ensure the safety of the structure. Finally, the experiment proves that the finite element analysis method of large tonnage cable crane structure has better adaptability value in the practical application process, and fully meets the research requirements.

     

  • Keyword: cable crane; Crane structure; Finite element method
  • DOI: 10.12250/jpciams2021090111
  • Citation form: Li Yunbo.Finite element analysis of large tonnage cable crane structure[J]. Computer Informatization and Mechanical System,2021,Vol.4,pp.38-46
Reference:

[1] Wang S ,  Ren Z ,  Jin G , et al. Modeling and Analysis of Offshore Crane Retrofitted with Cable-Driven Inverted Tetrahedron Mechanism[J]. IEEE Access, 2021, PP(99):1-1.

[2] Qin Z ,  Huang Q ,  Jin H , et al. Multi-Body Dynamics Simulation of Hoisting Wire Rope and Its Stress Analysis[J]. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38(3):485-493.

[3] Zhang S ,  He X ,  Chen Q . Energy coupled–dissipation control for 3-dimensional overhead cranes[J]. Nonlinear Dynamics, 2020, 99(3):2097-2107.

[4] Zhang M ,  Zhang Y ,  Ji B , et al. Adaptive sway reduction for tower crane systems with varying cable lengths[J]. Automation in Construction, 2020, 119(11):103342.

[5] Xing B ,  Huang J . Control of Pendulum-Sloshing Dynamics in Suspended Liquid Containers[J]. IEEE Transactions on Industrial Electronics, 2020, PP(99):1-1.

[6] Azmi N ,  Yahya N M ,  Fu H J , et al. Optimization of the PID-PD parameters of the overhead crane control system by using PSO algorithm[J]. MATEC Web of Conferences, 2019, 255(5):04001.

[7] Wu Y ,  Sun N ,  Chen H , et al. Adaptive Output Feedback Control for 5-DOF Varying-Cable-Length Tower Cranes With Cargo Mass Estimation[J]. IEEE Transactions on Industrial Informatics, 2020, PP(99):1-1.

[8] Rui Z ,  Wen L ,  Xiao J , et al. An efficient solution algorithm for space–time finite element method[J]. Computational Mechanics, 2019, 63(7):455-470.

[9] You R ,  Ren L ,  Yuan C , et al. Two-Dimensional Deformation Estimation of Beam-Like Structures Using Inverse Finite-Element Method: Theoretical Study and Experimental Validation[J]. Journal of Engineering Mechanics, 2021, 147(5):04021019.

[10] Xu L ,  Wu S Z ,  Yang S Y , et al. Accurate and Efficient Thermal Analysis of Slow Wave Structures for Helix Traveling-Wave Tubes by Finite-Element Method[J]. IEEE Transactions on Electron Devices, 2021, PP(99):1-7.

[11] Tamang N ,  Wongsaijai B ,  Mouktonglang T , et al. Novel algorithm based on modification of Galerkin finite element method to general Rosenau-RLW equation in (2 + l)-dimensions[J]. Applied numerical mathematics, 2020, 148(Feb.):109-130.

[12] Wu S W ,  Jiang C ,  Jiang C , et al. A unified-implementation of smoothed finite element method (UI-SFEM) for simulating biomechanical responses of multi-materials orthodontics[J]. Computational Mechanics, 2021, 67(10):541–565.

[13] Muhtar M . The Prediction of Stiffness Reduction Non-Linear Phase in Bamboo Reinforced Concrete Beam Using the Finite Element Method (FEM) and Artificial Neural Networks (ANNs) Muhtar[J]. Forests, 2020, 11(12):1313.

[14] Pervaiz S ,  Kannan S ,  Subramaniam A . Optimization of Cutting Process Parameters in Inclined Drilling of Inconel 718 Using Finite Element Method and Taguchi Analysis[J]. Materials, 2020, 13(18):3995.

[15]  Marchuk A V ,  SV  Reneiskaya,  Leshchuk O N . Three-Dimensional Analysis of the Free Vibrations of Layered Composite Plates Based on the Semianalytic Finite-Element Method[J]. International Applied Mechanics, 2020, 56(4):481-497.

[16] Fan W ,  Jiang X . Error analysis of the unstructured mesh finite element method for the two-dimensional time-space fractional Schrdinger equation with a time-independent potential[J]. International Journal of Computer Mathematics, 2020,24(12):1-20.

[17] Shin Y H ,  Lee J H . Estimation of the Complex Dynamic Stiffness of Inflated Rubber Diaphragms in Pneumatic Springs Using Finite Element Method[J]. Sensors, 2020, 20(23):6728.

[18] Stefenon S F ,  Seman L O ,  Neto C , et al. Electric Field Evaluation Using the Finite Element Method and Proxy Models for the Design of Stator Slots in a Permanent Magnet Synchronous Motor[J]. Electronics, 2020, 9(11):1975.

[19] Gao H ,  He W ,  Zhang Y , et al. Adaptive Finite-Time Fault-Tolerant Control for Uncertain Flexible Flapping Wings Based on Rigid Finite Element Method[J]. IEEE Transactions on Cybernetics, 2021, PP(99):1-12.

[20] Mahrous E ,  Roy R V ,  Jarauta A , et al. A two-dimensional numerical model for the sliding motion of liquid drops by the particle finite element method[J]. Physics of Fluids, 2021, 33(3):032117.


 

 

Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16