2023 Vol.6 Feb.No1 |
---|
|
Reference: References [1] Zuppa A F , Ellis D E , Zaoutis T E , et al. Comparing LASSO and random forest models for predicting neurological dysfunction among fluoroquinolone users [J]. Pharmacoepidemiology and Drug Safety, 2022, 31(4):393-403. [2] Hja B , Lin M , Ye W , et al. The influence of the neighbourhood environment on peer-to-peer accommodations: a random forest regression analysis [J]. Journal of Hospitality and Tourism Management, 2022, 51:105-118. [3] Jarmulska B , Bunn D W . Random forest versus logit models: which offers better early warning of fiscal stress?[J]. Journal of Forecasting, 2022, 41(3):455-490. [4] Mansouri M , Fezai R , Trabelsi M , et al. Fault Diagnosis of Wind Energy Conversion Systems Using Gaussian Process Regression-based Multi-Class Random Forest[J]. IFAC-PapersOnLine, 2022, 55( 6):127-132. [5] Deng X , Milligan K , Ali-Adeeb R , et al. Group and Basis Restricted Non-Negative Matrix Factorization and Random Forest for Molecular Histotype Classification and Raman Biomarker Monitoring in Breast Cancer:[J]. Applied Spectroscopy, 2022, 76(4):462-474. [6] Raj A , Misra J P , Khanduja D . Modeling of Wire Electro-Spark Machining of Inconel 690 Superalloy Using Support Vector Machine and Random Forest Regression Approaches[J]. Journal of Advanced Manufacturing Systems, 2022, 21(03):557-571. [7] Maturo F , Verde R . Pooling random forest and functional data analysis for biomedical signals supervised classification: theory and application to electrocardiogram data[J]. Statistics in Medicine, 2022, 41(12):2247-2275. [8] Merrigan J J , Stone J D , Wagle J P , et al. Using Random Forest Regression to Determine Influential Force-Time Metrics for Countermovement Jump Height: A Technical Report[J]. Journal of Strength and Conditioning Research, 2022, 36(1):277-283. [9] Liang J . Problems and Solutions of Art Professional Service Rural Revitalization Strategy Based on Random Forest Algorithm[J]. Wireless Communications and Mobile Computing, 2022, 2022(1):1-11. [10] Rezvi A , Moontaha S , Trisha K A , et al. Data mining approach to analyzing intrusion detection of wireless sensor network [J]. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 21(1):516-523. [11] M.D. Zainlabuddin, Sharma N . Security Enhancement in Data Propagation for Wireless Network [J]. Revista Gestão Inovação e Tecnologias, 2021, 11(4):4110-4119. [12] Gao B , Bu B , Zhang W , et al. An Intrusion Detection Method Based on Machine Learning and State Observer for Train-Ground Communication Systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, PP(99):1-13. [13] Jeune L L , Goedeme T , Mentens N . Machine Learning for Misuse-Based Network Intrusion Detection: Overview, Unified Evaluation and Feature Choice Comparison Framework[J]. IEEE Access, 2021, 9:63995-64015. [14] Hwa B , Fei W B , Lu Z . Application of variational mode decomposition optimized with improved whale optimization algorithm in bearing failure diagnosis[J]. Alexandria Engineering Journal, 2021, 60( 5):4689-4699. [15] Wang X , Cao l , Yang F . Network Intrusion Data Mining Simulation Based on Improved Apriori Algorithm[J]. Computer Simulation,(5)309-312,434. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16