location:Home > 2023 Vol.6 Feb.No1 > Recommended study on the knowledge blind area of the online learning system

2023 Vol.6 Feb.No1

  • Title: Recommended study on the knowledge blind area of the online learning system
  • Name: ZhuShiYu,RanChengHao,YangYi,ZhangTao,TongTao,ZhangRu
  • Company: (Chongqing Institute of Engineering,Chongqing 400000 China)
  • Abstract:

    This paper aims to study the knowledge blind spot recommendation framework of online learning system. This paper analyzes the current situation of online learning, portraits the students, and uses the timing model and recommendation model to realize the knowledge blind area recommendation. The experiment proves that this method can be effectively recommended for students and provide automatic interaction for online learning system.


  • Keyword: online learning, timing model, recommendation model, knowledge blind area
  • DOI: 10.12250/jpciams2023090319
  • Citation form: ZhuShiYu.Recommended study on the knowledge blind area of the online learning system [J]. Computer Informatization and Mechanical System,2023,Vol.6,pp.84-86
Reference:

Reference

[1] Hasanov A, Laine TH, Chung TS.A survey of adaptive context‐aware learning environments.J Ambient Intell Smart Environ.2019;11(5):403‐428.

[2] Guarin, C.E.L., Guzman, E.L., Gonzalez, F.A.A model to predict low academic performance at aspecific enrollment using data mining.Revista Iberoamericana de Tecnologias del Aprendizaje,2015

[3] Desmarais MC, Baker RS.A review of recent advances in learner and skill modeling in intelligent learning environments.User Model User‐Adapted Interact.2012;22(1‐2):9‐38.

[4] Pelánek R.Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques.User Modeling and User‐Adapted Interaction.2017;27(3‐5):313‐350.

[5] Thai‐Nghe N, Schmidt‐Thieme L.Multi‐relational factorization models for student modeling in intelligent tutoring systems.In: 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), IEEE; 2015:61‐66.

[6] Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L.Predicting students performance in educational datamining.InInternational symposium on educational technology, ISET 2015

[7] Guruler, H., Istanbullu, A., Karahasan, M..A new student performance analysing system usingknowledge discovery in higher educational databases.Computers & Education,2010

[8] Hämäläinen, W., & Vinni, M.Comparison of machine learning methods for intelligent tutoringsystems.InInternational conference on intelligent tutoring systems(pp.525–534): Springer.,2006

[9] Vie JJ, Kashima H.Knowledge tracing machines: factorization machines for knowledge tracing.In: Proceedings of the AAAI Conference on Artificial Intelligence.Vol.33; 2019:750‐757.

[10] Huang Z, Liu Q, Chen Y, et al Learning or forgetting?A dynamic approach for tracking the knowledge proficiency of students.ACM Trans Inform Syst.2020;38(2):1‐33.

[11] Gan W, Sun Y, Peng X, Sun Y.Modeling learner's dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing.Appl Intell.2020;50(11):3894‐3912.

[12] Yang Y, Shen J, Qu Y, et al GIKT: a graph‐based interaction model for knowledge tracing.In: ECML PKDD.Lecture Notes in Computer Science.Vol 12457. Springer, Cham; 2020. doi:10.1007/978‐3‐030‐67658‐ 2_18

[13] Liu Q, Wu R, Chen E, et al Fuzzy cognitive diagnosis for modelling examinee performance.ACM Trans Intell Syst Technol.2018;9(4):1‐26.

[14] Liu Y, Yang Y, Chen X, Shen J, Zhang H, Yu Y.Improving knowledge tracing via pre‐training question embeddings.In: Proceedings of the Twenty‐Ninth International Joint Conference on Artificial Intelligence; 2020.


Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16