2024 Vol.7 Feb.N01 |
---|
|
Reference: [1] GUO Xucai, LIU Bingbing, WANG Lili. Fault diagnosis of mining power cable based on wavelet packet and CS-BP neural network[J]. Computer Application and Software,2021,38(09): 105-110. [2] Zhao H R, Zhao H R, Guo S. Short-term windelectric power forecasting using a novel multi-stage intelligent algorithm[J].Sustainability, 2018,10. 10.3390/su10030881. [3] Liu Wuzhou, Liu Youbo. Research on wind power prediction based on improved particle swarm optimisation algorithm[J]. Renewable energy,2017,35(9):1331-1335. [4] WANG Huiying,WU Lianghong,MEI Panpan,et al. Drosophila optimised generalized neural network for short-term prediction of wind power[J]. Journal of Electronic Measurement and Instrumentation,2019,33(6):177-183. [5] Hu K Y, Cao S H, Wang L D, et al. A new ultrashort-term photovoltaic power prediction model based on ground-based cloud images[J]. Production, 2018, 200, 731- 745. [6] CHENG Yifan, QIAO Fei, HOU Ke, et al. Optimisation study of two-level energy scheduling strategy for regional microgrid cluster[J]. Journal of Instrumentation,2019,40(5):68-77.
|
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16