2024 Vol.7 Feb.N01 |
---|
|
Reference: References 1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014) 2. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differ- entiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)
Attentional Brownian Distance Covariance 11 3. Chen, H., Li, H., Li, Y., Chen, C.: Multi-scale adaptive task attention network for few-shot learning. In: 2022 26th International Conference on Pattern Recognition (ICPR). pp. 4765–4771. IEEE (2022) 4. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019) 5. Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: Exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision. pp. 9062–9071 (2021) 6. Doersch, C., Gupta, A., Zisserman, A.: Crosstransformers: spatially-aware few- shot transfer. Advances in Neural Information Processing Systems 33, 21981–21993 (2020) 7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning. pp. 1126–1135. PMLR (2017) 8. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine- grained categorization. In: Proceedings of the IEEE international conference on computer vision workshops. pp. 554–561 (2013) 9. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10657–10665 (2019) 10. Li, W., Wang, L., Huo, J., Shi, Y., Gao, Y., Luo, J.: Asymmetric distribution measure for few-shot learning. arXiv preprint arXiv:2002.00153 (2020) 11. Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubrama- nian, V.N.: Charting the right manifold: Manifold mixup for few-shot learning. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. pp. 2218–2227 (2020) 12. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. Ad- vances in neural information processing systems 27 (2014) 13. Oreshkin, B., Rodríguez López, P., Lacoste, A.: Tadam: Task dependent adaptive metric for improved few-shot learning. Advances in neural information processing systems 31 (2018) 14. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Inter- national conference on learning representations (2017) 15. Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE/CVF interna- tional conference on computer vision. pp. 331–339 (2019) 16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog- nition challenge. International journal of computer vision 115, 211–252 (2015) 17. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Ad- vances in neural information processing systems 30 (2017) 18. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learn- ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 403–412 (2019) 19. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1199–1208 (2018) 20. Székely, G.J., Rizzo, M.L.: Brownian distance covariance (2009) 21. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances (2007)
R. Zhao et al. 22. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16. pp. 266–282. Springer (2020) 23. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. Advances in neural information processing systems 29 (2016) 24. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011) 25. Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic settings. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 6558–6567 (2019) 26. Wertheimer, D., Tang, L., Hariharan, B.: Few-shot classification with feature map reconstruction networks. In: Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition. pp. 8012–8021 (2021) 27. Xie, J., Long, F., Lv, J., Wang, Q., Li, P.: Joint distribution matters: Deep brownian distance covariance for few-shot classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7972– 7981 (2022) 28. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adapta- tion with set-to-set functions. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8808–8817 (2020) 29. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12203– 12213 (2020) 30. Zhang, H., Koniusz, P.: Power normalizing second-order similarity network for few- shot learning. In: 2019 IEEE winter conference on applications of computer vision (WACV). pp. 1185–1193. IEEE (2019)
|
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16