2019 VOL.2 Apr No.2 |
---|
|
Reference: [1] Abin,A.A., Beigy, H.(2015). Active constrained fuzzy clustering: A multiple kernels learning approach. Pattern Recognition, 48(3):953-967. [2] Antoine, V., Quost, B., Masson, M. H., et al.(2014).CEVCLUS: evidential clustering with instance-level constraints for relational data. Soft Computing, 18(7):1321-1335. [3]Bakhtiarifar, M. H., Bashiri, M.(2015). A probabilistic clustering method for data elements with normal distributed attributes. Communications in Statistics - Simulation and Computation, 46(4):2563-2575. [4]Deng, F.(2017). Multiple Hops Network Classification Attribute Data Fuzzy Clustering in the Simulation. Computer Simulation, 34(1):292-295. [5] Liu, X., Li, M.(2014). Integrated constraint based clustering algorithm for high dimensional data. Neurocomputing,142(1):478-485. [6] Kou, G., Peng, Y., Wang, G.(2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences,275(11):1-12. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16