2024 Vol.7 Aug.N04 |
---|
|
Reference: [1]Sraitih M ,Jabrane Y ,El Hassani AH .An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques[J].Journal of Clinical Medicine, 2021,10:22. [2]Petmezas G , Haris K , Stefanopoulos L ,et al.Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets[J].Biomedical signal processing and control, 2021(Jan.):63. [3]Hammad M ,Alkinani MH ,Gupta BB ,et al.Myocardial infarction detection based on deep neural network on imbalanced data[J].Multmedia Systems,2022,28(4):1373-1385. [4]Hammad M , Iliyasu A M , Subasi A ,et al.A Multitier Deep Learning Model for Arrhythmia Detection[J].IEEE Transactions on Instrumentation and Measurement, 2021,(70-):70. [5]Hamil H , Zidelmal Z , Azzaz M S ,et al.Design of a secured telehealth system based on multiple biosignals diagnosis and classification for IoT application[J].Expert Systems. [6] Afkhami, R. G., Azarnia, G., and Tinati, M. A. (2016). Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recognition Letters, 70, 45-51. [7] Garcia, G., Moreira, G., Luz, E., and Menotti, D. (July 2016). Improving automatic cardiac arrhythmia classification: Joining temporal-VGC, complex networks and SVM classifier. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 3896-3900). IEEE. [8] Xu, X., Jeong, S., & Li, J. (2020). Interpretation of Electrocardiogram (ECG) Rhythm by Combined CNN and BiLSTM. IEEE Access, 8, 125380-125388. [9] Yu Yan, Yan Song-Song, Qiu Lei et al. Arrhythmia classification based on deep neural networks [J]. Automation Technology and Application,2023,42(08):1-5. (in Chinese) DOI:10.20033/ J.1003-7241.(2023)08-0001-05. [10]Pandey S K,Janghel R R,Vani V. Patient-specific machine learning models for ECG signal classification. Procedia Computer Science, 2020, 167: 2181-2190. [11]Chen C,Hua Z,Zhang R,et al. Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Proces Control, 2020, 57: 101819. [12]Malleswari, P. N., Bindu, C. H., & Prasad, K. S. (2021). Cardiac Severity Classification Using Pre-Trained Neural Networks. Interdisciplinary Sciences: Computational Life Sciences, 13(3), 443–450. [13]Hao, S., Xu, H., Ji, H., Wang, Z., Zhao, L., Ji, Z., & Ganchev, I. (2023). G2-ResNeXt: a novel model for ECG signal classification. IEEE Access. [14]Kuila S, Dhanda N, Joardar S. ECG signal classification and arrhythmia detection using ELM-RNN[J]. Multimedia Tools and Applications, 2022, 81(18): 25233-25249. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16