2025 Vol.8 Apr.N02 |
---|
|
![]() |
Reference: [1]Wu, P., Dietterich, T. G, Improving SVM accuracy by training on auxiliary data sources, C. Proceedings of the Twenty-first International Conference on Machine Learning. (2004) 871-878. https://doi.org/10. 1145/1015330.1015436. [2]J. Blitzer, R. McDonald, F. Pereira, Domain adaptation with structural correspondence learning, C. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. (2016) 120-128. https://doi.org/10.3115/1610075.1610094. [3]Li, S. Song, G. Huang and C. Wu, Cross-Domain Extreme Learning Machines for Domain Adaptation, J. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 49 (2019) 1194-1207. https://doi.org/10. 1109/TSMC.2017.2735997. [4]I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, J. Advances in Neural Information Processing Systems 27. 2014. https://arxiv.org/pdf/1406.2661v1.pdf. [5]G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: Theory and applications, J. Neurocomputing. 70 (2006) 489-501. https://arxiv.org/10.1016/j.neucom.2005.12.126. [6]C. He, Y. Liu, T. Yao, F. Xu, Y. Hu and J. Zheng, A fast learning algorithm based on extreme learning machine for regular fuzzy neural network, J. Journal of Intelligent & Fuzzy Systems. 36(2019) 3263-3269. https://doi.org/10.3233/JIFS-18046. [7]C. Marconi, C. A. Di Buduo, S. Barozzi et al, SLFN14-related thrombocytopenia: identification within a large series of patients with inherited thrombocytopenia, J. Thrombosis and Haemostasis. 115 (2016) 1076-1079. https://doi.org/10.1160/TH15-11-0884. [8]L. Zhang and D. Zhang, Domain Adaptation Extreme Learning Machines for Drift Compensation in E-Nose Systems, J. IEEE Transactions on Instrumentation and Measurement. 64 (2015) 1790–1801. https://doi.org/10.1109/TIM.2014.2367775. [9]X. Li, W. Mao, and W. Jiang, Extreme learning machine based transfer learning for data classification, J. Neurocomputing. 174 (2016) 203-210. https://doi.org/10.1016/j.neucom.2015.01.096. [10]C. H. Q. Ding, D. Zhou, X. He, and H. Zha, R1-pca: rotational invariant L1-norm principal component analysis for robust subspace for robust subspace factorization, C. International Conference on Machine Learning 2006 - Proceedings of the 23rd International Conference on Machine Learning, (2006) 281-288. https://doi.org/10.1145/1143844.1143880. [11]C. Chen, B. Jiang, X. Jin, Parameter Transfer Extreme Learning Machine based on Projective Model, C. International Joint Conference on Neural Networks(IJCNN). 2018. https://doi.org/10.1109/IJCNN. 2018.8489244. [12]Y. Chen, S. Song, S. Li, L. Yang and C. Wu, Domain Space Transfer Extreme Learning Machine for Domain Adaptation, J. IEEE Transactions on Cybernetics. 49 (2019) 1909-1922. https://doi.org/10.1109/ TCYB.2018.2816981. [13]L. Zhang, Transfer Adaptation Learning: A Decade Survey, J. Computer Vision and Pattern Recognition, (2019) 1903-4687. https://arxiv.org/abs/1903.04687. [14]Y. Ganin and V. Lempitsky, Unsupervised domain adaptation by backpropagation, J. arXiv. 2014. https://arxiv.org/abs/1409.7495v2. [15]J. Zhang, Z. Ding, W. Li and P. Ogunbona, Importance Weighted Adversarial Nets for Partial Domain Adaptation, C. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2018) 8156-8164. https://doi.org/10.1109/CVPR.2018.00851. [16] Z. Pei, Z. Cao, M. Long, and J. Wang, Multi-adversarial domain adaptation, J. the Association for the Advance of Artificial Intelligence (AAAI). 2018. https://arxiv.org/pdf/1809.02176.pdf. [17]E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, Simultaneous Deep Transfer Across Domains and Tasks, C. 2015 IEEE International Conference on Computer Vision (ICCV). 30 (2015) 4068-4076. [18]H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marc hand. Domain-adversarial neural network. arXiv. (2015). https://arxiv.org/pdf/1412.4446.pdf [19]E. Tzeng, J. Hoffman, K. Saenko and T. Darrell, Adversarial Discriminative Domain Adaptation, C. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017) 2962-2971. https: //doi.ieeecomputersociety.org/10.1109/CVPR.2017.316. [20]S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto, Few-shot adversarial domain adaptation, C. Conference and Workshop on Neural Information Processing Systems (NIPS). (2017). https://arxiv.org/ abs/1711.02536. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16