2025 Vol.8 Jun.N03 |
---|
|
![]() |
Reference: [1] Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on Software Engineering, (2), 222-232. [2] Lunt, T. F., Jagannathan, R., Lee, R., & Gilham, F. (1993). IDES: The enhanced intrusion detection expert system. In SRI International, Computer Science Laboratory (Vol. 93-09). [3] Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill. [4] Dietterich, T. G. (1997). Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier Systems (pp. 1-15). Springer, Berlin, Heidelberg. [5] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. [6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. [7] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [8] Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882. [9] Zhou, T., & Zhang, H. (2024). Research on network intrusion detection method based on deep learning. Journal of Cloud Computing, 10(1), 1-12. [10] Thaljaoui, A. (2025). Intelligent network intrusion detection system using optimized deep CNN-LSTM with UNSW-NB15. Journal of Information Security and Applications, 62, 103061. [11] Liu, H., & Li, L. (2023). A network intrusion detection method based on deep learning. Computers & Security, 127, 102954. [12] Yeung, D. Y., & Ding, Y. (2003). Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition, 36(1), 229-243. [13] Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Computers & Security, 31(3), 357-374. [14] Paxson, V. (1999). Bro: A system for detecting network intruders in real-time. Computer Networks, 31(10), 2435-2463. [15] Salah, S., Maciá-Fernández, G., & Díaz-Verdejo, J. E. (2013). A model-based survey of alert correlation techniques. Computer Networks, 57(5), 1289-1317. [16] Lee, W., Miller, M., Stolfo, S. J., Fan, W., & Zadok, E. (2002). Toward cost-sensitive modeling for intrusion detection and response. Journal of Computer Security, 10(3), 5-22. [17] Cheng, T. H., Lin, Y. D., Lai, Y. C., & Lin, P. C. (2012). Evasion techniques: Sneaking through your intrusion detection/prevention systems. IEEE Communications Surveys & Tutorials, 14(4), 1011-1020. [18] Zhu, M., & Zhang, Y. (2020). Research on network intrusion detection based on deep belief network. Journal of Computer and Communications, 8(05), 45-52. [19] Zhang, H., & Zhou, T. (2024). Network intrusion detection method combining CNN and BiLSTM in cloud computing environment. International Journal of Advanced Computer Science and Applications, 15(5), 1-11. [20] Thaljaoui, A., & Abdelaziz, F. (2024). Intelligent network intrusion detection system using optimized deep CNN-LSTM with UNSW-NB15. Journal of Information Security and Applications, 62, 103061. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16