2025 Vol.8 Jun.N03 |
---|
|
![]() |
Reference:References[1] Gao Jun. Research on fault diagnosis and state comprehensive evaluation of power transformer[J]. Huazhong University of Science and Technology, 2011, 201: 1-05. [2] Sheng Gehao, Qian Yong, Luo Lingen, et al. Key technologies of power equipment operation and maintenance for new power systems and their application[J]. High Voltage Technology, 2021, 47(9): 3072-3084. [3] ZHOU Wenchao,ZHOU Zihan,JIN Chong. Research on partial discharge fault diagnosis of transformer based on SVM[J]. Railroad Communication Signal Engineering Technology,2022,19(S1):137-140. [4] HUANG Lei,WANG Hui. Fault diagnosis of dissolved gas concentration in transformer oil based on convolutional neural network[J]. Electrical Appliance Industry,2023(01):45-50. [5] Liu Zheng. Research on fault diagnosis of dry-type transformer based on temperature field finite element analysis[D]. Tianjin University of Technology,2019. [6] Singhal A. Introducing the knowledge graph: things, not strings[J]. Official google blog, 2012, 5(16): 3. [7] Bao Y, Tang F, Li X, et al. Semantic-Based Heterogeneous Controller Collaboration for Space-Terrestrial Integrated Networks[C]//2021 IEEE 23rd Int. Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). IEEE, 2021: 571-578. [8] Yu H, Cai H, Liu Z, et al. An Automated Metadata Generation Method for Data Lake of Industrial WoT Applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(8): 5235-5248. [9] Sha Q, Yang Q, Li G. A Parallel Implementation of Liveness on Knowledge Graphs under Label Constraints[C]//2021 International Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE, 2021: 103-110. [10] ZHAO Jun, DONG Qinwei, WU Jun, DAI Wei. An algorithm for power engineering knowledge graph architecture based on multi-source heterogeneous data fusion[J]. Electronic Design Engineering,2022,30(23):37-41.DOI:10.14022/j.issn1674-6236.2022.23.009. [11] Li Xiaoyu. A knowledge graph based fault diagnosis method for power grid [D]. North China Electric Power University (Beijing), 2022.DOI:10.27140/d.cnki.ghbbu.2022.000678. [12] DONG Li Ke, BAI Heron, WU Na, YANG Dong Dong. Research on fault prediction method of power transformer based on knowledge graph[J]. High Voltage Electrical Apparatus,2022,58(11):151-159.DOI:10.13296/j.1001-1609.hva.2022.11.019. [13] XIE Qing, CAI Yang, XIE Jun, WANG Chunxin, ZHANG Yutong, XU Zhikang. Research on the construction method and application of ALBERT-based knowledge graph for power transformer operation and maintenance[J]. Journal of Electrotechnology,2023,38(01):95-106.DOI:10.19595/j.cnki.1000-6753.tces.221751. [14] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015. [15] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16