2025 Vol.8 Oct.N05 |
---|
|
![]() |
Reference: [1] Mansoori, N. S., Nejati, M., Razzaghi, P., & Samavi, S. (2013, May). Bag of visual words approach for image retrieval using color information. In 2013 21st Iranian Conference on Electrical Engineering (ICEE) (pp. 1-6). IEEE. [2] Ma, H., Zhu, J., Lyu, M. R. T., & King, I. (2010). Bridging the semantic gap between image contents and tags. IEEE Transactions on Multimedia, 12(5), 462-473. [3] Koonce, B. (2021). ResNet 50. In Convolutional neural networks with swift for tensorflow: image recognition and dataset categorization (pp. 63-72). Berkeley, CA: Apress. [4] Rui, Y., Huang, T. S., & Chang, S. F. (1999). Image retrieval: Current techniques, promising directions, and open issues. Journal of visual communication and image representation, 10(1), 39-62. [5] Wei, J., Peng, B., Lee, X., & Palpanas, T. (2024). Det-lsh: a locality-sensitive hashing scheme with dynamic encoding tree for approximate nearest neighbor search. arXiv preprint arXiv:2406.10938. [6] Jing, Y., & Baluja, S. (2008). Visualrank: Applying pagerank to large-scale image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 1877-1890. [7] Partio, M., Cramariuc, B., Gabbouj, M., & Visa, A. (2002, October). Rock texture retrieval using gray level co-occurrence matrix. In Proc. of 5th Nordic Signal Processing Symposium(Vol. 75, No. 1, pp. 511-524). [8] Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., & Li, J. (2014, November). Deep learning for content-based image retrieval: A comprehensive study. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 157-166). [9] Hasan, B. M. S., & Abdulazeez, A. M. (2021). A review of principal component analysis algorithm for dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1), 20-30. [10] Xia, P., Zhang, L., & Li, F. (2015). Learning similarity with cosine similarity ensemble. Information sciences, 307, 39-52. [11] Targ, S., Almeida, D., & Lyman, K. (2016). Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029. [12] Kotei, E., & Thirunavukarasu, R. (2023). A systematic review of transformer-based pre-trained language models through self-supervised learning. Information, 14(3), 187. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16