2025 Vol.8 Dec.N06 |
|---|
|
|
| Reference: [1] Mishra R, Gupta M. DRABC-LB: A Novel Resource-Aware Load Balancing Algorithm Based on Dynamic Artificial Bee Colony for Dynamic Resource Allocation in Cloud [J]. SN Computer Science, 2024, 5(2):1-16. [2] Shang J, Yan J, Ren F. BDI Agents Based Dynamic Resource Allocation in Emergency Scenarios[J]. 2024 IEEE International Conference on Agents (ICA), 2024:45-49. [3] Basu D, Kal S, Datta G R. DRIVE: Dynamic Resource Introspection and VNF Embedding for 5G Using Machine Learning[J]. IEEE Internet of Things Journal, 2023, 10(21):18971-18979. [4] Wu J, Lin K, Xie Y, et al. A Multi-Service Real-Time Resource Scheduling Optimization Method Based on the O-RAN Architecture[J]. 2024 International Conference on Intelligent Communication, Sensing and Electromagnetics (ICSE), 2024:233-237. [5] Huang F, Wang W, Wang T. Dynamic Resource Management for Enhanced QoS in Collaborative Edge-Edge Industrial Environments[J]. 2024 Twelfth International Conference on Advanced Cloud and Big Data (CBD), 2024:314-320. [6] Xiong W, Wang X, Wotawa F, et al. Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning[J]. Journal of Internet Technology, 2024, 25(7):1071-1081. [7] Li Y, Yang S, Zhang W, et al. Research on Resource Scheduling Optimization Algorithms for Cloud Platform Business Systems in a Microservices Architecture[J]. 2024 IEEE 4th International Conference on Data Science and Computer Application (ICDSCA), 2024:736-742. [8] Sehgal N, Bansal S, Bansal R K. A Comparative Analysis of Dynamic Scheduling Algorithms for Enhanced Resource Management in Homogeneous and Heterogeneous Fog Computing Environments[J]. Procedia Computer Science, 2023, 230:542-553. [9] Satic U, Jacko P, Kirkbride C. A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem[J]. European Journal of Operational Research, 2024, 315(2):454-469. [10] Sinha A, Banerjee P, Roy S, et al. Improved Dynamic Johnson Sequencing Algorithm (DJS) in Cloud Computing Environment for Efficient Resource Scheduling for Distributed Overloading [J]. Journal of Systems Science and Systems Engineering, 2024, 33(4):391-424. [11] Kovalenko V, Zhdanova O. Dynamic mathematical model for resource management and scheduling in cloud computing environments[J]. Information, Computing and Intelligent Systems, 2024(5):90-100. [12] Rabaaoui S, Héla Hachicha, Zagrouba E. An Efficient and Autonomous Dynamic Resource Allocation in Cloud Computing with Optimized Task Scheduling[J]. Procedia Computer Science, 2024, 246(000):3654-3663. [13] Majhi M K, Kabat M R, Sahoo S P. MCFSGO: An Energy-Efficient Multi-Adaptive Firebug Swarm Genetic Optimization Algorithm for Dynamic Resource Scheduling in Cloud Environments[J]. International Journal of Bio-Inspired Computation, 2025, 25(2):79-87. [14] Zhou X, Yang J, Li Y, et al. EC-TRL: Evolutionary-Weighted Clustering and Transformer-Augmented Reinforcement Learning for Dynamic Resource Scheduling in Edge Cloud Environments[J]. IEEE Internet of Things Journal, 2025, 12(6):7503-7517. [15] Cao A, Chen X, Jiao L, et al. Dynamic Resource Scheduling Based Quality of Service Optimization in Multi-UAV-Assisted City Edge Network Systems[J]. 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2024:4561-4567. |
Tsuruta Institute of Medical Information Technology
Address:[502,5-47-6], Tsuyama, Tsukuba, Saitama, Japan TEL:008148-28809 fax:008148-28808 Japan,Email:jpciams@hotmail.com,2019-09-16